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Binary Gaussian core model: Fluid-fluid phase separation and interfacial properties

A. J. Archer and R. Evans
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom

~Received 16 May 2001; published 17 September 2001!

Using a mean-field equation of state we calculate the density-concentration phase diagrams for a binary
mixture of repulsive Gaussian core particles over a range of size ratios. A simple mean-field density functional
~DFT! approach, equivalent to the random phase approximation, is used to calculate the surface tension and
density profiles of the interface between the demixed fluid phases of the binary mixture. For certain coexisting
states oscillations are found in the density profiles on both sides of the interface, i.e., approaching both bulk
phases. The form of the oscillations is determined by the asymptotic decay of the bulk total pairwise correla-
tions, and the onset of oscillations in the interfacial density profiles depends on the location of the crossover
line ~Fisher-Widom line! in the bulk phase diagram where the asymptotic decay changes from monotonic to
damped oscillatory. For certain particle size ratios we find another crossover line that separates a region of the
phase diagram where the longest-range decay of the pairwise correlations is damped oscillatory from a region
where the longest-range decay is damped oscillatory but with a different wavelength. We argue that many of
the predictions of the simple DFT approach should remain valid in more refined treatments.

DOI: 10.1103/PhysRevE.64.041501 PACS number~s!: 68.05.Cf, 61.20.Gy, 61.25.Hq, 64.60.Fr
t
,

id
se
ffi
a
th
e

ia
e

nd
Fo

nt
ha
a
he

it
e

ry

es
a

re
m

s.
rd

ge

ulk
-

e

tri-
t

at a
te

s
s a

de-
e-
e
par-
in
de-

that

an
all
I. INTRODUCTION

In recent years increasing attention has been paid to
properties of a particular ‘‘soft-particle’’ model of fluids
namely, the Gaussian core model~GCM! in which particles
interact via the repulsive pairwise potentialv(r )
5e exp(2r2/R2), wheree.0 sets the energy scale andR the
range of the potential. The GCM was introduced in the m
1970s by Stillinger@1#. It regained some popularity becau
~i! the GCM can yield a negative thermal expansion coe
cient in the liquid phase@2# and ~ii ! a Gaussian serves as
good approximation for the effective interaction between
centers of mass of two polymer chains in an athermal solv
@3–6#.

The mathematical properties of the GCM are of spec
interest@2# and the phase behavior is rather well establish
@2,6,7#. In the temperature-density (T,r) plane there is a
region belowkBT/e.0.01 where increasingr leads to freez-
ing into a fcc phase, followed by a fcc-bcc transition, a
then melting so that the fluid is stable at high densities.
e* [be,100 whereb5(kBT)21, the fluid is stable atall
densities. Recently Langet al. @7# and Louiset al. @8# have
studied the fluid region of the phase diagram using Mo
Carlo simulations and integral equation theories. W
emerges is that for high densities the hypernetted-ch
~HNC! approximation provides an excellent account of t
Monte Carlo results for the radial distribution functiong(r ),
structure factorS(q), and equation of state. In the lim
rR3→` it is argued that the HNC closure should becom
exact@7#. Particularly striking is the observation that a ve
simple closure, the random phase approximation~RPA!,
which sets the pair direct correlation functionc(2)(r )
52bv(r ), becomes very accurate for very high densiti
rR3*5 @7,8#. This implies that the GCM behaves as
‘‘mean-field fluid’’ over a very wide density and temperatu
range. As the density increases the correlation hole beco
weaker andg(r )→1, for all separations of the particle
Such behavior is very different from that of fluids with ha
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cores where short-ranged~packing induced! correlations al-
ways persist. For this soft-core model in the limitrR3→`,
the mean inter-particle separationr21/3 becomes very much
less thanR and a central particle interacts with a very lar
number of neighbors—a classic mean-field situation.

Since the RPA is accurate over such a large range of b
densities it is tempting to argue@7,8# that the simplest mean
field Helmholtz free energy functional

F@r#5Fid@r#1
1

2E dr1E dr2r~r1!r~r1!v~ ur12r2u!

~1!

should yield a realistic description of theinhomogeneous
GCM provided the one-body densityr(r ) does not acquire
very small values. The density functional~1! generatesthe
RPA: c(2)(r )52bv(r ). Physically one is arguing that th
excess~over the ideal gasFid) free energy of the fluid can be
approximated by the internal energy with the pairwise dis
bution functionr (2)(r1 ,r2) replaced by its uncorrelated limi
r(r1)r(r1). Louiset al.used the functional~1! to investigate
the density profiles of Gaussian core particles adsorbed
hard wall. Their results agree closely with those from Mon
Carlo simulations fore* 52 and the three bulk densitie
rR351,0.5,0.1, confirming that the GCM does behave a
mean-field fluid—at least for this type of inhomogeneity@8#.

Given the success of the simple mean-field theory in
scribing the pure fluid it is natural to ask what the corr
sponding theory yields for a binary mixture of repulsiv
Gaussian core particles. This question was addressed
tially in Ref. @8# and the authors showed that for certa
choices of the energy and range parameters fluid-fluid
mixing is predicted by the mean-field~RPA! approach. Al-
though it is not clear that this phase separation mimics
which is found in polymer blends@8#, the observation that a
system with purely repulsive interparticle potentials c
separate into two fluid phases is of intrinsic interest. Rec
that the pure GCM exhibits only a single fluid phase.
©2001 The American Physical Society01-1
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A. J. ARCHER AND R. EVANS PHYSICAL REVIEW E64 041501
In the present paper we investigate the nature of the
terface between the two coexisting fluid phases in the bin
GCM using the two-component generalization of Eq.~1!,
i.e., the density functional that generates the RPA for
three partial pair direct correlation functionsci j

(2)(r ) of the
mixture. We find that in spite of its simplicity this mean-fie
theory predicts surprisingly structured density profiles; th
is a wide range of thermodynamic states where the profile
both species exhibit oscillations decaying into the bulk
each side of the interface. The occurrence of oscillation
directly related to the form of the asymptotic decay of t
total pairwise correlationshi j (r ) in the bulk mixture.

Our paper is arranged as follows. In Sec. II we descr
the binary GCM and the determination of the bulk binod
~fluid-fluid coexistence curve! within the mean-field approxi-
mation, showing how the phase separation varies with
size ratioR22/R11. Section III presents results for the dens
profilesr i(z), i 51,2, and surface tension at the planar flu
fluid interface. In Sec. IV we determine the asymptotic dec
of hi j (r ) and the crossover line~Fisher-Widom line! in the
bulk phase diagram where the character of the longest-ra
decay changes from monotonic to oscillatory. The location
these lines determines whether or not oscillations can o
in the interfacial density profiles@9#. For certain size ratios
we find a different line, away from the binodal, that separa
a region where pairwise correlations exhibit oscillatory d
cay from a region where the oscillations have a differ
wavelength. We conclude in Sec. V with a discussion of
results and possible limitations of the mean-field appro
for interfacial properties.

II. THE MODEL MIXTURE AND ITS PHASE DIAGRAM

The GCM binary mixture is specified by the pair pote
tials between particle speciesi and j. These are given by the
Gaussian form

v i j ~r !5e i j exp~2r 2/Ri j
2 ! ~2!

where e i j .0 denotes the energy andRi j determines the
range of thei j interaction; 1< i , j <2. Thinking of the par-
ticles as representing polymers,Rii is roughly the radius of
gyration of speciesi.

We use a simple mean-field form for the intrinsic Helm
holtz free energy functional of the inhomogeneous mixtu

F @$r i%#5Fid@$r i%#1
1

2 (
i j

E dr1

3E dr2r i~r1!r j~r2!v i j ~ ur12r2u! ~3!

whereFid is the ideal gas part of the free energy function
Equation~3! is a straightforward generalization to mixture
of the functional introduced in Eq.~1!. Recalling that the
two-body direct correlation functions are given by

ci j
(2)~r1 ,r2!52

bd2~F@$r i%#2Fid@$r i%#!

dr i~r1!dr j~r2!
, ~4!
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it follows that

ci j
(2)~r1 ,r2!5ci j

(2)~ ur12r2u!52bv i j ~ ur12r2u!, ~5!

which is the standard random phase approximation. In
bulk mixture the densities are constants,r i(r )5r i

b . Writing
these in terms of the total densityr and a composition vari-
ablex, such thatr1

b5(12x)r andr2
b5xr, we can write the

bulk Helmholtz free energy per particlef as @8#

f ~r,x!5 f id~r,x!1
1

2
rV̂0~x!. ~6!

b f id contains the ideal free energy of mixingx ln(x)1(1
2x)ln(12x) as well as an irrelevantr dependent term. The
mean-field interaction term is

V̂0~x!5~12x!2v̂11~0!12x~12x!v̂12~0!1x2v̂22~0!
~7!

wherev̂ i j (0) is theq50 limit of the Fourier transform~FT!
of the pair potential~the caret denotes a FT with respect
the wave vectorq):

v̂ i j ~0!5E drv i j ~r !5p3/2e i j Ri j
3 . ~8!

Since the free energy~6! has the simple mean-field form, th
thermodynamic stability conditions for the binary mixtu
also take a very simple form and Louiset al. @8# showed that
fluid-fluid phase separation is possible at constant volu
provided

b21x[2v̂12~0!2@ v̂11~0!1 v̂22~0!#.0 ~9!

or at constant pressure provided

b22D[@ v̂12~0!#22 v̂11~0!v̂22~0!.0. ~10!

In order to observe phase separation we must choose
parameterse i j andRi j so that these conditions are satisfie
The choice of parameters can be restricted further by mak
contact with simulation studies of binary solutions of se
avoiding polymer coils at infinite dilution@4# in which it was
suggested that the effective potentials between the poly
centers of mass could be modeled quite well by the GC
defined by Eq.~2!, with

e12<e115e22 ~11!

and

R12
2 5

1

2
~R11

2 1R22
2 !. ~12!

Clearly, relation~11! favors mixing; the energy penalty i
lower if unlike species are neighbors. It is relation~12! that
favors demixing since it impliesR12.(R111R22)/2, which
corresponds to positive nonadditivity, known to drive dem
ing in hard-sphere mixtures@8#. The majority of our calcula-
tions for interfacial properties will be for a mixture wit
1-2



u
he
l

n

If
x
E

g

e
in

tw
l
e

b

e
e in-

r-
o-
tion

ses

ure
m
ive
ined
dif-

a
t

ra
ss
e-

ar
h
se
ic
ve

ec

th
the

e

t
for

BINARY GAUSSIAN CORE MODEL: FLUID-FLUID . . . PHYSICAL REVIEW E64 041501
be11[e11* 5e22* 52, e12* 51.888, R22/R1150.665, andR12
given by Eq.~12!. ~Henceforward we useR11, the radius of
gyration of the longer polymer, as the length scale in o
analysis.! This choice of parameters was motivated by t
study of Louiset al. @8# where theRi j were chosen to mode
a mixture of self-avoiding polymers withL5200 ~species 1!
and L5100 ~species 2! monomers. The radius of gyratio
Rg;Ln wheren.0.588 is the Flory exponent.

For e* 52 the pure GCM remains fluid for all densities.
the mixture is treated within the present mean-field appro
mation the temperature scales out of the free energy in
~6! and the phase behavior is that of an athermal system@8#,
depending only on the ratiose12/e11 andR22/R11. We chose
e12/e11 so that the critical point of the fluid-fluid demixin
was the same as that in the mixture considered in Ref.@8#,
i.e., at xc50.70, rcR11

3 55.6. In Fig. 1 we plot the phas
diagram for this particular choice of parameters. The sp
odal ~dash-dotted line! is obtained as described in Ref.@8#.
We determined the binodal by standard procedures. For
demixed phasesA and B to be in equilibrium the chemica
potentialsm i and the pressuresP of the two phases must b
equal, i.e.,m i ,A5m i ,B for i 51,2 andPA5PB . In terms of
v51/r, the volume per particle, these quantities are given

m15 f 2vS ] f

]v D
x

2xS ] f

]xD
v

, ~13!

FIG. 1. The bulk phase diagram for a mixture of Gaussian p
ticles withe12/e1150.944 andR22/R1150.665, which is equivalen
to a mixture of two polymers with length ratio 2:1.r is the total
density andx is the concentration of the smaller species 2. The g
lines are lines of constant pressure; the lowest is at reduced pre
PbR11

3 5100, the next atPbR11
3 5150, then 200, and the subs

quent ones increase in increments of 100. The points markedA–F
are the points where the gray lines intersect the binodal~solid line!.
The density profiles for the corresponding fluid-fluid interfaces
shown in Figs. 6 and 7 below. The dashed line denotes the Fis
Widom ~FW! line where the asymptotic decay of the bulk pairwi
correlation functions crosses over from oscillatory to monoton
The solid line in the bottom right corner denotes a line of crosso
from asymptotic oscillatory decay with a certain wavelength to
similar oscillatory decay but with a different wavelength—see S
IV.
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m25 f 2vS ] f

]v D
x

1~12x!S ] f

]xD
v

, ~14!

and

P52S ] f

]v D
x

. ~15!

The calculation of the binodal is simpler to perform in th
ensemble where the pressure is the independent variabl
stead of the total densityr51/v. We Legendre transform to
g5 f 1Pv whereg(x,P) is the Gibbs free energy per pa
ticle. In this ensemble the conditions of equal chemical p
tential and pressure lead to the common tangent construc
on g:

S ]g

]xD
P
U

xA

5S ]g

]xD
P
U

xB

5
g~xA ,P!2g~xB ,P!

xA2xB
~16!

wherexA andxB are the concentrations of species 2 in pha
A andB, respectively.

The gray lines in Fig. 1 denote lines of constant press
in the (r,x) phase diagram. Also plotted is the Fisher-Wido
~FW! line to which we shall return later. Other representat
phase diagrams are shown in Figs. 2–4. These are obta
from the same mean-field free energy but correspond to
ferent choices ofR22/R11, i.e., different length ratios. In
each casee12/e11 is chosen to keep the~total! critical density
at a similar value to that of the original mixture. AsR22/R11
is reduced the critical concentrationxc shifts to higher values
and the shape of the FW line is altered significantly.
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FIG. 2. As in Fig. 1 but nowe12/e1150.825 andR22/R11

50.524, which is equivalent to a mixture of two polymers wi
length ratio 3:1. The gray lines are lines of constant pressure;
lowest is at reduced pressurePbR11

3 5100 and the others increas
in increments of 100. The right hand branch of the FW line~dashed
line! lies close to thex51 axis but the solid line in the bottom righ
corner denoting oscillatory-oscillatory crossover is still present
these parameters.
1-3
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A. J. ARCHER AND R. EVANS PHYSICAL REVIEW E64 041501
Finally in Fig. 5 we consider a different class of mixtu
described by the parameterse11* 5e22* 52, e12* 52.07, and
R115R225R12. Now the demixing occurs not because of t
nonaddivity of theRi j but because there is a lower ener
penalty when like species are neighbors. The phase diag
is symmetrical aboutx50.5. We shall find that several of th

FIG. 3. As in Fig. 1 but nowe12/e1150.70 and R22/R11

50.388, which is equivalent to a mixture of two polymers wi
length ratio 5:1. The gray lines are lines of constant pressure;
lowest is at reduced pressurePbR11

3 525, the next atPbR11
3 5100,

and then increasing in increments of 100. It becomes increasi
difficult to determine the binodal asP is increased; the coexistin
phase to the right is almost pure species 2 (x51) and the total
densityr becomes very high. The right hand branch of the FW l
and the oscillatory-oscillatory crossover cannot be seen due to
proximity to thex51 axis.

FIG. 4. As in Fig. 1 but nowe12/e1151.0 andR22/R1150.8,
which is equivalent to a mixture of two polymers with length ra
1.46:1. The gray lines are lines of constant pressure; the lowest
reduced pressurePbR11

3 5100 and the others increase in increme
of 100. For these parameters there is no crossover line between
types of oscillatory decay and no cusp in the FW line.
04150
m

interfacial properties are quite different in this class of m
ture from those in the former class.

III. PROPERTIES OF THE FLUID-FLUID INTERFACE

In this section we investigate the one-body density p
files r i(z), i 51,2, and the surface tensiong for the planar
interfaces that arise between coexisting fluid phases in
GCM. Since our approach is based on the mean-field
energy functional~3! effects of capillary-wave fluctuation
are omitted and~away from the critical point! the interfacial
width remains finite in vanishing gravitational field. Thus w
work with the grand potential functional

VV@$r i%#5F @$r i%#2(
i
E dr @m i2Vi~r !#r i~r !, ~17!

taking from the outset the external potentialsVi(r )5Vi(z)
50, i 51,2. This procedure yields well-defined planar de
sity profilesr i(z), with z normal to the surface, from which
the surface tension can be calculated.

A. Density profiles

In order to calculate the equilibrium density profile
across the free interface we take the functional derivative
Eq. ~17! which, using Eq.~3! and in the absence of an exte
nal field, yields the Euler-Lagrange equation

m i5m i ,id„r i~z1!…1(
j
E dr2r j~z2!v i j ~ ur12r2u!. ~18!

m i ,id is the chemical potential of speciesi in an ideal gas and
bm i ,id(r i)5 ln(L i

3r i) (L i is the thermal de Broglie wave

e
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FIG. 5. As in Fig. 1 but nowe12/e1151.035 andR22/R11

51.0. In this symmetrical case there is no crossover line betw
two types of oscillatory decay and no cusp in the FW line. Note
perfect symmetry about the linex50.5. The tie lines are horizonta
in this case.
1-4
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BINARY GAUSSIAN CORE MODEL: FLUID-FLUID . . . PHYSICAL REVIEW E64 041501
length!. Eliminating the chemical potentials in favor of th
bulk coexisting densitiesr i

b that were found from the calcu
lation of the binodal, we have

r i~z1!5r i
b expF(

j
E dr2@r j

b2r j~z2!#v i j ~ ur12r2u!G . ~19!

This coupled pair of equations can be solved se
consistently for the density profiles of the two species. T
results for a mixture of Gaussian particles representin
mixture of polymers of length ratio 2:1 are shown in Figs
and 7. The striking feature is the development of pronoun
oscillations in the density profile of the larger species,r1(z),
for states well removed from the critical point. Closer i
spection shows that for statesC, D, E, and F both density
profiles r1(z) and r2(z) exhibit nonmonotonic decay into
the bulk phase that is rich in species 1. On the other sid
the interface, approaching the bulk phase rich in specie
magnification shows that bothr1(z) and r2(z) are non-
monotonic for statesD, E, andF. For statesA andB, closer
to the critical point, there is no sign of oscillations on eith
side of the interface.

This is not the first time that damped oscillatory dens
profiles have been calculated for fluid-fluid interfaces trea
by DFT. Evanset al. @9# found that the planar liquid-vapo
density profiles for a one-component square-well flu
treated by means of a nonlocal weighted density approxi
tion for repulsive forces exhibited oscillations on the liqu
side of the interface provided the thermodynamic state
sufficiently far from the bulk critical point. The oscillation
we find for species 1 in the present calculations are con
erably more pronounced than those found in Ref.@9# and
resemble those found for the colloidal profile in a recent D
study @10# of a model colloid–~ideal! polymer mixture in

FIG. 6. The equilibrium density profiles of species 1, the larg
particles, at the planar interface between coexisting fluid phase
states specified in Fig. 1, i.e., a mixture of two polymers with len
ratio 2:1. For stateA near the critical point, the interface is broa
whereas far from the critical point, statesE and F, the interface
becomes much sharper. Oscillatory profiles are found for statesC–
F.
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which colloid-colloid and colloid-polymer interactions ar
hard-sphere-like. The oscillations were found in both the c
loid and polymer profiles but only on the colloid rich side
the interface. Here we find, for a range of thermodynam
states, oscillations onboth sides of the interface. Moreove
these oscillations arise for a system in which the interpart
potentials are very soft and are treated by means of the
plest mean-field DFT.

In the original analysis of oscillatory one-body dens
profiles r(z) at the liquid-vapor interface it was shown@9#
that oscillations should occur when the bulk fluid, in th
case a liquid, lies on the oscillatory side of the FW line. T
latter divides the bulk phase diagram into regions where
longest-range decay ofrh(r ) is either pure exponential o
~exponentially! damped oscillatory@11#. h(r )5g(r )21 is
the total pairwise correlation function of the fluid. It was al
argued that the wavelength and the decay length of the
cillations in r(z) asz→` ~deep into the bulk phase! should
be identical to those characterizing the asymptotic decayr
→`) of rh(r ) @9#. In order to understand the genesis
oscillations inr1(z) and r2(z) for our present model we
calculated the FW line for the bulk mixture, now defined
the line in the phase diagram where the leading asympt
decay of all three pairwise correlation functionshi j (r ), 1
< i , j <2, crosses over from monotonic to oscillatory; the
FW lines are shown in Figs. 1–5. Details of the calculatio
are described in Sec. IV. Here it suffices to say that we fi
oscillations on both sides of the interface when the tie lin
intersect both sides of the binodal at points that lie above
two intersections of the FW line~this has two branches! with
the binodal, i.e., statesD, E, andF in Fig. 1. A similar situ-
ation occurs for the more symmetrical casee12/e1151.0 and
R22/R1150.8, shown in Fig. 4. However, for the more asym
metrical cases in Figs. 2 and 3 where the right hand bra
of the FW line lies very close to thex51 axis and therefore

r
for
h

FIG. 7. The equilibrium density profiles of species 2, the sma
particles, corresponding to Fig. 6. The insets show magnificati
of regions where the profiles exhibit oscillations. Note that the p
files of both species decay into a given bulk state with the sa
decay length and, when oscillatory, the same wavelength. The
plitude and the phase do depend on the species.
1-5
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A. J. ARCHER AND R. EVANS PHYSICAL REVIEW E64 041501
intersects the binodal at very high densities, oscillations
observable at fairly low pressures on the side of the interf
rich in species 1~small x) whereas for the side rich in spe
cies 2 very high pressures are required before the oscillat
arise.

For the perfectly symmetrical mixtureR22/R1151.0,
whose phase diagram is shown in Fig. 5, the binodal and
FW line are symmetric aboutx50.5 and the density profile
r1(z) and r2(z) are simply reflections of each other—s
Fig. 8. Because of the symmetry, if oscillations occur in t
profiles on one side of the interface they must occur on
other side. As can be seen from Fig. 5, the intersection of
FW line with the binodal is at a total density not very f
above the critical density and oscillatory profiles should
cur for rR11

3 .6.5. However, for states not too far above t
intersection of the FW line and the binodal the amplitude
the oscillatory contribution to the profile is often small, ma
ing it difficult to distinguish this contribution in the numer
cal results.

The general theory of the asymptotic decay of correlati
in fluid mixtures with short-ranged interparticle potentia
predicts @12# that the longest-range decay of the profil
should be

r i~z!2r i
b;r i

bAi exp~2a0z!, z→`, ~20!

on the monotonic side of the FW line and

r i~z!2r i
b;r i

bÃi exp~2ã0z!cos~a1z2u i !, z→`,
~21!

on the oscillatory side. Equivalent relations apply forz
→2`, with the appropriate identification of the bulk dens
tiesr i

b . The decay lengthsa0
21 andã0

21 and the wavelength
of oscillations 2p/a1 are properties of the bulk fluid and ar

FIG. 8. Equilibrium density profiles of species 1 for the sym
metric mixture withe12/e1151.035 andR22/R1151.0 whose phase
diagram is given in Fig. 5. The density profiles are calculated
total bulk densitiesrR11

3 56, 8, 11, 14, and 16~from bottom to top
in the left hand phase!. The density profiles of species 2 are mere
reflections of these profiles in the linez/R11525.6.
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the same for both species~see Sec. IV!. Only the amplitudes

Ai and Ãi and, for oscillatory profiles, the phaseu i depend
on the particular speciesi. Our numerical results are consis
tent with these general predictions. Note that on the FW l

a05ã0 and that for states near this line both types of co
tribution must be taken into account.

B. Surface tension

Having calculated the equilibrium density profiles at t
free interface, these can be used to obtain the surface ten
of the interface. The latter is defined as the excess gr
potential per unit area and can be written as

g5E
2`

`

dz@P1v~z!# ~22!

whereP is the bulk pressure at coexistence andv(z) is the
grand potential density obtained from Eqs.~3! and~17! with
Vi(z)50. The reduced tensiong* 5bgR11

2 is plotted in Fig.
9 for the interfaces corresponding to Figs. 6 and 7, i.e.,
phase diagram of Fig. 1. We have chosen to plotg* versus
the order parameter (r1

b,A2r1
b,B)R11

3 , wherer1
b,A is the bulk

density of species 1 in phaseA, rich in species 1, andr1
b,B is

the same quantity in phaseB, poor in species 1@13#. On
approaching the critical point simple mean-field argume
imply that g* should vanish as (r1

b,A2r1
b,B)3 and this is

confirmed by our numerical results. A similar plot ofg* for
the perfectly symmetric mixture is displayed in Fig. 10. No
that for a given value of (r1

b,A2r1
b,B)R11

3 , g* is significantly
larger for the asymmetric mixture~Fig. 9!.

t

FIG. 9. The reduced surface tensiong* 5bgR11
2 calculated for

the planar interface between coexisting fluid phases in the sys
specified in Fig. 1, i.e., a mixture of two polymers with length ra
2:1. (r1

b,A2r1
b,B)R11

3 , the difference in density of species 1 betwe
bulk phasesA andB, andg vanish at the critical point. The circle
are the results of our calculations and the solid line joining thes
a guide to the eye.
1-6



f

in

e

id

ac
ing

-
e

id
id
s

ly

t to

ty,
in-

.
he

a-
en-
a-

ic
ex-

In
nd

c

lcu

w it

st
rily

BINARY GAUSSIAN CORE MODEL: FLUID-FLUID . . . PHYSICAL REVIEW E64 041501
We can obtain an estimate for the surface tension o
phase separated mixture of ‘‘polymers’’ by choosingg* 55,
corresponding to a state well removed from the critical po
T5300 K andR11520 nm. We findg552 mN/m, a value
one order of magnitude greater than that calculated and m
sured for a colloid-polymer mixture@13#, but two orders of
magnitude smaller than the tensions of simple atomic flu
near their triple points.

Further insight into the factors that determine the surf
tension in our binary mixtures can be obtained by work
with linear combinations of the density profilesr1(z) and
r2(z). The total number densityN(z) and a local concentra
tion variableC(z), the surface segregation, may be defin
for a fluid-fluid interface by

N~z!5r1~z!1r2~z!, ~23!

C~z!5
xr1~z!2~12x!r2~z!

x~12x!
, ~24!

wherex is the concentration of species 2 in the bulk liqu
phase. These variables are normally introduced for a liqu
gas interface. For the situation where the ‘‘gas’’ phase ha
nonzero density, the integral overC(z) diverges. When the
densities of both phases are comparable,C(z) should be re-
placed by the symmetrized segregation@14#

D~z!5
a2@r1~z!2r1

b,A#2a1@r2~z!2r2
b,A#

a1a2
~25!

where theai are given by

ai5
r i

b,A2r i
b,B

~r1
b,A1r2

b,A!2~r1
b,B1r2

b,B!
, i 51,2. ~26!

FIG. 10. The reduced surface tensiong* 5bgR11
2 calculated for

the planar interface between coexisting fluid phases in the perfe
symmetric system specified in Fig. 5. (r1

b,A2r1
b,B)R11

3 , the differ-
ence in density of species 1 between bulk phasesA and B, andg
vanish at the critical point. The circles are the results of our ca
lations and the solid line joining these is a guide to the eye.
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with A andB referring to the two coexisting phases. Clear
a11a251. D(z) may also be expressed as

D~z!5
a2@r1~z!2r1

b,B#2a1@r2~z!2r2
b,B#

a1a2
. ~27!

The integral of D(z) yields the thermodynamic function
G2,1, i.e., the relative adsorption of species 2 with respec
species 1@14#:

G2,152a2E
2`

`

dzD~z!. ~28!

Thus D(z), which has the dimension of number densi
measures the variation of local concentration through the
terface. Figure 11 shows a plot ofD(z) calculated from the
profiles in Figs. 6 and 7. Below it is displayed@v(z)1P#,
the integrand of Eq.~22!, which gives the surface tension
Both functions are nonzero only in the interfacial region. T
similarity between the two sets of curves shows that the m
jor contribution to the surface tension comes from conc
tration fluctuations at the interface rather than from fluctu
tions of the total density sinceN(z) has a very different
form—see the inset to part~a! of the figure.

The situation is quite different for the perfectly symmetr
mixture considered in Fig. 5. Because of the symmetry
hibited by the density profiles,a2D(z)5rb2N(z), where
rb5r1

b,A1r2
b,A is the total density in both bulk phases.

Fig. 12 we compare plots of the surface tension integra

@v(z)1P# and the functionÑ(z)[rb2N(z) corresponding

tly

-

FIG. 11. The top graph~a! shows the functionD(z) obtained
from the density profiles shown in Figs. 6 and 7.D(z), defined by
Eq. ~25!, measures the surface segregation at the interface. Belo
in ~b! is plotted @v(z)1P#, the integral of which is the surface
tension. Each set of curves corresponds to state pointsA–F on the
phase diagram~Fig. 1!; the most oscillatory refers to stateF. Apart
from the scales on they axes the two sets of curves are almo
identical, demonstrating that the surface tension arises prima
from concentration fluctuations. The total densityN(z)5r1(z)
1r2(z), shown in the inset to~a!, has very different variation from
the surface tension integrand.
1-7
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to the density profiles of Fig. 8. It is clear that the two sets
curves are very similar.

IV. ASYMPTOTIC DECAY OF CORRELATION
FUNCTIONS AND THE FISHER-WIDOM LINE

In this section we describe the asymptotic decay,r→`, of
the total pairwise correlation functionshi j (r ) in our model
mixture and the determination of the FW line. The ba
procedure follows that in@12#. In Fourier space the Ornstein
Zernike equations forhi j (r ) in terms of the pairwise direc
correlation functionsci j (r ) of a two-component liquid are

ĥi j ~q!5
Ni j ~q!

D~q!
~29!

where ĥi j (q) is the three-dimensional Fourier transform
hi j (r ). The numerator is given by

N11~q!5 ĉ11~q!1r2
b
„ĉ12

2 ~q!2 ĉ11~q!ĉ22~q!…,

N22~q!5 ĉ22~q!1r1
b
„ĉ12

2 ~q!2 ĉ11~q!ĉ22~q!…,

N12~q!5 ĉ12~q!, ~30!

and

D~q!5@12r1
bĉ11~q!#@12r2

bĉ22~q!#2r1
br2

bĉ12
2 ~q!.

~31!

Inverting the FT and noting thatĥi j (q) is even we can write

FIG. 12. The top graph~a! shows the function@v(z)1P# ob-
tained from the density profiles of the symmetrical mixture sho
in Fig. 8, the integral of which is the surface tension. Below it in~b!

is plotted the total density fluctuation variableÑ(z)[rb2N(z).
Apart from the scales on they axes the two sets of curves are almo
identical, demonstrating that the surface tension arises prima
from total density fluctuations.
04150
f

c

rhi j ~r !5
1

4p2i
E

2`

`

dqqeiqr ĥi j ~q!

5
1

4p2i
E

2`

`

dqqeiqr
Ni j ~q!

D~q!
~32!

which can be evaluated by contour integration@12#. From
Eq. ~5! it follows that within our mean-field treatment of th
GCM

ĉi j ~q!52b v̂ i j ~q!52bp3/2Ri j
3 e i j exp~2Ri j

2 q2/4! ~33!

and the singularities ofĥi j (q) are simple poles. Choosing a
infinite radius semicircle in the upper half of the compl
plane, we obtain

rhi j ~r !5
1

2p (
n

eiqnrRn
i j ~34!

whereRn
i j is the residue ofqNi j (q)/D(q) for thenth pole at

q5qn . The qn are solutions ofD(qn)50 and there is nor-
mally an infinite number of poles. If a pole lies on the imag
nary axis,qn5 ia0, it contributes a pure exponential term o
the form exp(2a0r) to the sum in Eq.~34!. Poles lying off
the imaginary axis occur in conjugate pairsqn56a11 i ã0
and such a pair contributes a damped oscillatory term of
form exp(2ã0r)cos(a1r2u) to the sum in Eq.~34!. The
longest-range decay ofhi j (r ) is determined by the pole o
the conjugate pair of poles with the smallest imaginary p
If a0,ã0 the longest-range decay is monotonic~pure expo-
nential!, otherwise it is damped oscillatory. Since all thr
ĥi j (q) have a common denominatorD(q) all three hi j (r )
decay ultimately with the same decay length and wa
length; only the residues depend on the particular species
these determine only the amplitudes and phases of the l
ing order decay@12,15#. Similar arguments@12# apply for the
one-body density profiles in a binary mixture and give rise
Eqs. ~20! and ~21!. The a0 , ã0, anda1 appearing in these
equations are determined by the poles ofĥi j (q)—as de-
scribed above.

The FW line alluded to earlier is the crossover line in t
phase diagram wherea05ã0. As the fluid-fluid spinodal
corresponds to points in the phase diagram at which the p
imaginary pole vanishes, i.e.,a050, crossover from oscilla-
tory to monotonic decay must occur before the spinoda
reached, which implies that the FW line lies below the sp
odal in the (r,x) plane. By calculating the zeros ofD(q),
i.e., the first few poles, for a range of state points it
straightforward to map out the FW lines displayed in Fig
1–5.

For the first three cases, Figs. 1–3, the dashed FW
has two separate branches terminating in a cusp at low
densityrcu . As the mixture is made more asymmetric, i.e
R22/R11 decreases, the right hand branch lies closer to
axis x51. On the left hand branch the crossover~at fixed
r.rcu) is from longest-range oscillatory decay with wav

n

t
ly
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length 2p/a1'2R11 to monotonic decay, whereas on th
right hand branch it is from monotonic to oscillatory wi
wavelength'2R22. Forr,rcu there is a separate crossov
line, denoted by the solid line in the bottom right corner
Figs. 1–3. On each side the long-range decay is given b

rhi j ~r !;Ãi j exp~2ã0r !cos~a1r 2u i j !

1A5 i j exp~2a5 0r !cos~a18r 2u i j8 !, r→`,

~35!

where a1'p/R11 and a18'p/R22. To the left of the line

ã0,a5 0 while on the right,ã0.a5 0, i.e., there is crossove
from oscillatory decay with one wavelength to oscillato
decay with another wavelength whenã05a5 0. At the cusp,
where the two branches of the FW line meet this line,
pure imaginary~monotonic! pole a05ã05a5 0.

Making the mixture more symmetric shifts the cusp
smallerx and forR22/R11.0.707 there is no cusp in the FW
line and the crossover line separating regions with differ
types of oscillatory decay is absent—see Figs. 4 and 5.
ther details of the pole structure that gives rise to the cro
over lines will be given elsewhere.

To the best of our knowledge this is the first time that t
FW line has been mapped out for a binary mixture exhibit
fluid-fluid phase separation of the type displayed here@16#
and it is important to inquire how robust results based on
simple RPA~5! might be. For the pure GCM the comprehe
sive study of Louiset al. @8# showed that fore* 52 the
radial distribution functionsg(r ) obtained from the hyper
netted chain approximation were virtually indistinguishab
from Monte Carlo data at reduced densitiesrR350.1, 0.5,
and 2.0. These authors also argued that the HNC should
come exact in the high density limit and suggested that
HNC pair correlation function should provide an~‘‘exact’’ !
reference against which other approximations might
gauged. In this spirit we compare, in Fig. 13, the RPA res
for g(r ) with those obtained from our own HNC calculation
at reduced densitiesrR3 2, 4, and 6. As the density is in
creased the correlation hole is reduced and the degre
particle overlap increases, leading to ag(r ) that is closer to
that of the ideal gas@8#. For rR352 the RPA result lies well
below the HNC forr /R&0.4, i.e., in the central overlap re
gion. However, forrR356 the two closures yield very simi
lar results for all except the smallest separationsr. What is
more significant for our present purposes is that for all th
densities the simple RPA result is very close to that of
HNC for large separations, i.e.,r /R*0.8. In particular, the
oscillations ing(r ) are very well captured by the RPA—se
the inset to Fig. 13. This implies that the RPA provides
rather accurate account of the asymptotic decay ofg(r ) and
therefore of the leading pole inĥ(q) @17#, at least for re-
duced densities*2. But this is the range of~total! densities
most relevant in determining the FW lines in the mixtur
~see Figs. 1–5! so we are confident that our results for t
latter should be qualitatively correct.
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Further evidence for the existence of the oscillato
oscillatory crossover line comes from considering the l
density approximation

ci j ~r !5 f i j ~r ![exp@2bv i j ~r !#21 ~36!

where f i j (r ) denotes the Mayer function. We calculated t
zeros ofD(q), Eq. ~31!, using this approximation and foun
a crossover line approachingr50, x51, similar to that
shown in the bottom right corner of Figs. 1 and 2.

Finally, we should remark that the accuracy of the R
for determining the spinodal and the fluid-fluid coexisten
curve of the binary GCM has been examined by Finkenet al.
@18#. For parameters close to those employed in Fig. 1 T
find that the HNC and the RPA coexistence curves are clo

V. DISCUSSION

In this paper we have calculated the properties of the p
nar interface between two coexisting fluid phases in the
nary GCM using the simplest mean-field free energy fu
tional ~3!. We considered various choices of the size ra
R22/R11, employing the rule~12! for the range paramete
R12. It is the positive nonadditivity embodied in Eq.~12!
that drives the demixing in Figs. 2–4 since the correspo
ing energy parameters favor mixing, i.e.,e11* 5e22* >e12* . The
surface tension in these systems is governed by the seg
tion D(z), which measures the local relative concentration
the interface, rather than by the local total densityN(z)—see
Fig. 11. For comparison we also considered a symme
system withR22/R1151.0 ande12* .e11* where the demixing
is driven by energy considerations. Symmetry then dicta
that the phase diagram is symmetric aboutx50.5 ~Fig. 5!
and the surface tension is governed byN(z)—see Fig. 12.
However, in all the cases we considered, plots of the redu
surface tensiong* versus the order parameter (r1

b,A

FIG. 13. The radial distribution functiong(r ) for a pure fluid of
Gaussian particles withe* 52 and radiusR, calculated at reduced
densitiesrR352,4,6 ~from bottom to top!. For each density the
dotted line is the HNC result and the solid line is that of the R
closure. The inset shows a magnification of the oscillations.
1-9
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2r1
b,B)R11

3 showed similar behavior to those in Figs. 9 and
with g* vanishing at the critical point as (r1

b,A2r1
b,B)3. Be-

yond the mean field approximation to the exponent should
replaced by the ratio 2n/b, wheren denotes the correlation
length andb the coexistence curve~order parameter! critical
exponent, respectively. As we expect the critical behavio
this system to lie in the Ising universality class, for whi
2n/b;3.9, the curves in Figs. 9 and 10 should, in reality,
flatter near the origin.

The most striking aspect of our results~Figs. 6 and 8! is
the presence of pronounced oscillations in the interfa
density profiles for certain thermodynamic states. We
counted for the occurrence of damped oscillations in term
general arguments involving the asymptotic decay of
bulk pairwise correlation functionshi j (r ), i.e., by means of

an analysis of the leading poles ofĥi j (q) and determination
of the FW lines that parallels earlier DFT treatments of
terfaces@9,10#. The oscillations arise from packing effec
which are still present in these soft-core systems. Althou
our present mean-field functional~2! should provide reliable
estimates forã0 anda1 and hence for the decay length an
wavelength of the oscillations@see Eq.~21!#, it is not clear
that it will yield reliable amplitudesÃi . The latter depend on
the strength and extent of the inhomogeneity rather than
properties of the bulk phase. Thus for states such asE andF
in Fig. 1, which are very far from the critical point and de
in the oscillatory region of the phase diagram, the the
must treat density profiles that decrease fromr1R11

3 .9 to
extremely low valuesr1R11

3 .0.03 over a distance of abou
2R11 ~see Fig. 6!. One would certainly expect the function
~i.e., the RPA! to fail in the very low density region. The
situation seems rather more favorable for species 2~Fig. 7!
where r2R11

3 >0.3 throughout the interface for all state
However, even for stateF, the oscillations inr2(z) are ex-
tremely weak! The total densityN(z) is, of course, large
throughout the interface and shows only mild variation
all states~see the inset to Fig. 11!. But the theory must be
able to describe the individual profiles. These exhibit a
gree of inhomogeneity that is higher than for the pure GC
near a hard wall where the functional performs well@8#. We
believe that a more refined DFT, which incorporates a m
accurate treatment of low densities, might yield smaller a
plitudes for the oscillations inr1(z) without significantly
altering their decay length and wavelength@19#.

All approximate DFT treatments omit the effects
capillary-wave fluctuations of the interface@20#. Incorporat-
ing the latter usually requires somead hocprescription. The
standard procedure is to assume that DFT furnishes
‘‘bare’’ or ‘‘intrinsic’’ profiles—which might be oscillatory,
as in the present case—and that fluctuations can be unfr
on these. At the simplest level one performs a Gauss
smearing of the profiles over the interfacial thermal roug
nessj' . If the profile has an oscillatory tail with the form o
Eq. ~21! one finds that the wavelength 2p/a1 and decay
length ã0

21 are unaltered but the amplitude is reduced b

factor exp@2(a1
22ã0

2)j'
2/2# @12,21#. As we have seen,a1 is

an intrinsic property of the bulk fluid and is approximate
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p/R11 or p/R22. The roughnessj' depends on the interfa
cial areaLx

2 and on the external potential, e.g., gravity, th
might be present at a real planar interface. If we ignore
latter j'

2 5(2pbg)21 ln(Kmax/Kmin) whereKmax andKmin

are the upper and lower cutoff wave numbers for t
capillary-wave fluctuations @20#. We may take Kmin

52p/Lx andKmax52p/j wherej[ã0
21 is the bulk corre-

lation length. It follows that the amplitude of the oscillation
in the density profile should be reduced by a fac
(Lx /j)2v[(a1 /ã0)221] where v[(4pbgj2)21 is the stan-
dard dimensionless parameter that measures the streng
capillary-wave fluctuations. Clearly, the larger the value
v, i.e., the smaller the surface tensiong, the more damped
are the oscillations. What is significant about this formula
that the amplitude is predicted to have a power-law dep
dence on the interfacial areaLx

2 . This prediction has been
examined by Toxvaerd and Stecki@22# in molecular dynam-
ics simulations of a liquid-liquid interface. Their model is a
equimolar binary mixture in which the 11 and 22 interatom
potentials are identical@both are~truncated! Lennard-Jones#,
whereas the 12 potential is purely repulsive. Thus th
model mixture resembles the symmetric case in our pre
study. For smallLx the density profiles reported in@22# ex-
hibit oscillations similar to those in Fig. 8. The oscillation
appear to be insensitive to the length of the simulation b
~perpendicular to the interface! but their amplitude depend
on the areaLx

2 of the box. IncreasingLx reduces the ampli-
tude in a manner that is consistent with power-law dec
@22#, lending support to the picture of ‘‘Gaussian unfreezin
of fluctuations on an intrinsic profile that is oscillatory.

It is important to consider the various length scales in
problem. For the mixture in Ref.@22# we expectj;s, the
Lennard-Jones diameter, anda1;2p/s for states well re-
moved from the critical point where pronounced oscillatio
are observed.s would be a few angstroms if we were mod
eling an atomic mixture. In our present GCM we have
mind polymers where the radius of gyrationR11 is, of course,
much longer. Nevertheless, it is evident that the abso
length scales cancel out in the combinations (a1 /ã0)221
and v. Thus one might expect similar power laws for th
damping of oscillations with interfacial area. Detailed es
mates depend on the precise values of the reduced ten
g* , ã0, anda1. As an illustration we consider the symmetr
case of the GCM with total bulk densityrR11

3 514 where the
oscillations are fairly well pronounced—see Fig. 8. At coe
istence we finda1R1154.69, ã0R1151.34, and the reduced
surface tensiong* 517.1, which impliesv58.3731023

and (a1 /ã0)221511.3. Thus the exponent in the powe
law is 20.1, implying that the amplitude of the oscillation
is only weakly damped by the capillary-wave fluctuations.
we repeat the calculation for the interface simulated by T
vaerd and Stecki@22#, using their valuesã0s50.28, a1s
56.98, andg* [bgs252.7, we find a much stronger damp
ing: the exponent is21.4. For the liquid-vapor interface of
simple one-component fluid near its triple point the cor
sponding exponent is usually estimated to be about23. In
other words, our present binary GCM exhibits a particula
1-10
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‘‘stiff’’ interface for those states where the oscillations in th
mean-field treatment are pronounced. Of course, these s
are far from the critical point and correspond to very hi
total densities and very high surface tensions. One does
observe such a situation at the liquid-vapor interface of
one-component fluid since the triple point~solid phase! in-
tervenes. There should be no solid phases in the rele
high density region of the phase diagram of the binary GC
This suggests that computer simulations of the fluid-fl
interface might be very revealing@23#.

To conclude, we return to possible applications of the
nary GCM to mixtures of polymers. As mentioned in th
Introduction, the effective interaction between two identic
isolated nonintersecting polymer chains, averaged over
internal conformations, is well represented by a Gauss
whose widthR is of the same order as the radius of gyrati
and whose height is a fewkBT. Note that the effective po
tential is entropic, so thate is simply proportional to the
temperatureT, for an athermal solvent@6#. Recently, Louis
et al. @5# have shown that the Gaussian shape remains a g
approximation to the effective potential in dilute and semi
lute solutions of self-avoiding random walk~SAW! polymers
and that the parameterse andR do not vary strongly with the
concentration of the polymer:e.2kBT. The same authors
showed that the Gaussian effective potential reproduces
structure and thermodynamic properties of SAW polymer
lutions over a wide concentration range. Such a proced
e
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has great appeal as the monomer degrees of freedom
longer appear; one treats the chains as ‘‘soft colloids’’@5#.
Much less is established for mixtures of polymers; it is n
known how well the phase separation found for the GC
~using the RPA and the HNC@18#! accounts for that which is
observed at high concentration in mixtures of polymers w
different chain lengths@24#. Phase separation is, of cours
also observed in polymer blends~melts!. Given the predic-
tions of rich interfacial behavior that have emerged from
present study of the GCM, it would be worthwhile to purs
further possible connections between demixing in polym
systems and in the GCM.

As a final remark we note that the binary Gaussian c
model is very different from the binary Gaussian model
troduced by Helfand and Stillinger@25#. In the latterv11(r )
5v22(r )50 while the Mayer f function f 12(r )
[exp@2bv12(r )#21 is a Gaussian. This model also exhib
fluid-fluid phase separation at high densities@25#.
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